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ABSTRACT 

Following our research concerning the procedures used in non-isothermal kinetics [1,2], we 
present here a new method for evaluating the non-isothermal kinetic parameters. The method 
takes into account the difference between the sample temperature and the programmed one 
using local heating rates. By applying the method to a theoretically modelled curve, values of 
the non-i~the~~ kinetic parameters which are in fairly good agreement with those used in 
modelling have been obtained. 

INTRODUCTION 

The fundamental isothermal rate equation used to derive the non-isother- 
mal kinetic equations is 

g =Af(cr) exp- j& 0) 

with the classical conditions 

A = const. (2) 

E = const. (3) 

f(a) = (I- i~)~cP[ -ln(l - fx)I’ (4) 

where n, M and p are constants [3]. By applying the classical non-isother- 
mal change (CNC) [4-61 to equation (l), considered as postulated primary 
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isothermal differential kinetic equation (P-PIDKE) [5,6], using a linear 
heating programme where 

T= T,+j?t (5) 

it turns out that 

g =Af(cu) exp - E 
R(T, + Pt) 

Equation (6), taking into account that 

dT 

dt- -P 

becomes 

da A 
dT = pf(a) exp - gT 

(6) 

(7) 

(8) 

The differential non-isothermal kinetic eqns. (6) and (8) are fundamental in 
non-isothermal kinetics [4-lo]. 

THE PRINCIPLE OF THE METHOD 

The integration of the eqn. (8) leads to [1,2] 

(9) 

where & is the local heating rate corresponding to the closed interval 

(y E [(yiY akl [2Y111e 
Tk - lJ 

Pik = ~ t, - ti 
( 10) 

By applying the mean value theorem from mathematical analysis to the 
integrals from (9), we obtain [1,2,12] 

ak - ai 

-----=&(T,-C)exp-& 
f(aik) rk 

(11) 

where 

aik E (% a/J (12) 

Tk E (G T,) 03) 

To simplify the notations, we shall use X to denote the variables (i, k), i.e. 
aik = a,; & = T,; ak - ai = ACQ, * Tk - T = AT,; t, - ki = At,. In such con- 

ditions, taking into account relationship (lo), eqn. (11) becomes 

A% 
fM 

=AAt,exp-& 
x 

(14) 
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From eqn (14), by taking the logarithms, one obtains 

A% 
lnA+lnf(a,)-j&= - 

In At, x 
(15) 

This is the equation upon which our proposed method is based. 

THE EVALUATIONS OF THE PRE-EXPONENTIAL FACTOR A AND OF THE 
ACTIVATION ENERGY FOR A KNOWN f(a) 

Considering the pairs (i, k) or A and applying the least-squares method 
[13,14] to the N equations of the form (15), the sum S,, which should be 
minimized, is obtained 

S,= E 
i 
InA-& + In 

f(%) Atx 2 

x=1 A 4 I 
(16) 

From the minimum conditions of S, 

(17) 

as1 -= 
i3E ’ (18) 

the unknowns In A and E can be evaluated as solutions of the system of 
equations (17) and (18), or (19) and (20) written in explicit forms 

09) 

THE EVALUATION OF A, E AND THE ESTABLISHING OF THE FORM OF f(a) 

For the general form (4) of f(a), using eqn. (15), the sum S,, which should 
be minimized with respect to In A, E, n, m and p, is obtained 

S,= F lnA+nln(l-a,)+mlna,+pln[-ln(l-a,)] 
A=1 

E 4 
2 

--- - 

RTA In At, 

The minimum conditions of S, are 

(21) 

as2 o as2 o as2 o as2 o as2 -= . -= . -= . -= . -= 
a In A ’ an ’ am ’ ap ’ aE O 

(22) 
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which, explicitly written, leads to the following system of equations whose 
solutions are the kinetic parameters 

N N N 

NlnA+n~ln(l-a,)+m~lna,+p~ln[-ln(l-cr,)] 
X=1 X=1 x=1 

-E;: l - = fllnZ 
x-1 RT, 

(In A) E ln(l - (Y~) + n 5 ln2(1 - (Y~) + m 5 In (Ye ln(l - ah) 
x=1 X=1 A=1 

+p fJ ln[ -ln(l - a,)]ln(l - CX~) 
x=1 

-EEL 
x=1 RTA 

ln(1 - (Y~) = 5 In %ln(l - aX) 
x=1 AtA 

N N N 

(In A) C In Q~ + n C (1 - aX) In, + m C ln2 (Ye 
x=1 A=1 A=1 

+p t ln[ - ln(l - CX~) In (Ye - E 5 -L 
x=1 x=l Rdn ah 

(In A) t ln[ -ln(l -.cx~)] + n F ln(l - CY~) ln[ -ln(l- (Y~)] 

(23) 

(24) 

x=1 h=l 

N N 

+m~lna,ln[-ln(l-cu,)]+pCln’[-ln(l-a,) 
A=1 A=1 

(26) -EE l x=l Kln[ -ln(I - aA)] = f lnad”ln[ -ln(I - CQ)] 
x-1 AtA 

(ln~)~l(-~)+~~l(-~)ln(I-~,)+~~~(-~)lna, 

+PF 
A=1 ( 1 

-& ~+~no-~A)l +GJ&)’ 
N 

= Ei A=1 

-&) lnz (27) 

In principle, this system allows the evaluation of In A, E, n, m and p. 

Nevertheless, taking into account ideas from ref. 15 concerning the instabil- 
ity of the systems of equations derived from eqn. (8), one can state that the 
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evaluation of more than three kinetic parameters is impossible; thus A, E, 
n, m and p cannot be determined simultaneously. 

If, for the same N, several forms of f( cy) have to be considered, the form 
for which S, has the minimum value will be chosen. 

THE WIDTH OF THE INTERVALS Aq AND AT, 

To choose the best width of the intervals Aa, and AT, it must be 
remembered that too small a width leads to high experimental errors in Aa,, 
and AT, and thus to a poorly conditioned problem; nor is too large a width 
recommended because of errors in the values of Tf and a! (see arguments 
following) which can cause a weak convergence (eventually a divergence) of 
the iterative method. Taking into account our experience [1,2,11,12], we 
recommend the following intervals 

0.05 I ha, I 0.40 (28) 

5K<hT,120K (29) 

THE EVALUATION OF TA AND a,, 

Zero-order approximation 

This approximation, taking into account [1,2,11,12], is 

(30) 

(31) 

Using these values, the system of eqns. (19) and (20) or the system of eqns. 
(23)-(27) are solved, leading to In A’, E”, no, m” and p”. 

First-order approximation 

The zero-order kinetic parameters being known, the values Ti and c& can 
be obtained from the relationship [2] 

J 
ak da (Yk - ai Acr, -= PC 

C-X, fO(cr) fO(a’,) fO(&) 

E0 
exp - sdT= AT, exp - - 

A RT,’ 
(33) 

where f’(a) means that in relationship (4), no, m” and p” are used. The 



Fig. 1. Trend of u values towards the exact value through successive iterations. 

values of 2’: and ai determined from eqns. (32) and (33) are introduced in 
the above-mentioned systems which are solved with respect to In A’, E’, d, 
ml and p’, By repeating this procedure we arrive at 

J 
ak 

ai 

J 
G EW’) 

7; 
exp - gdT= AT, exp - - 

RTi 

(34) 

(35) 

Using T{ and (Y {, the values of In A’, Ej, ni, mj and pj can be obtained in 
the usual way. 

The iteration is stopped when 

1 &) _ ,fi-1) 1 < E 

where u is one of the parameters 
I?, * * ’ ) ui tend to the exact value as 

The result is given as: 

vi + u(j-l) 
v= 

2 

where 

u=ln A, E, n, morp 

(36) 

In A, E, n, m or p. The values u”, 
shown in fig. 1. 

(37) 

(38) 

THE APPROXIMATE EVALUATION OF THE TEMPERATURE INTEGRAL 

This work uses the appro~mation of Senum and Yang [16] 

1 
T 
exp-&dT=Texp-x 

x3 + 18x2 + 88x + 96 
(39) 

0 x4 + 20x3 + 120x2 + 240x + 120 

where 

E 

X=RT 

which gives an error of less than 10P3%. 
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The integrals of the form 
/ 

Tk 
exp - (E/RT) dT will be calculated 

T, 
according to the relationship 

J 
Tk Tk T, 

T, 
exp - gdT= 

/ 0 

exp - cTdT- 
J 0 

exp - &dT (41) 

The advantages of the method can be summarized as follows: it uses the 
least-squares method, which allows the solution of a large number of 
relationships of the form of eqn. (15) (N - 10-20) covering a range of (Y 
values (0.05 I (Y < 0.95); it uses iteration enabling the calculation to be 
stopped at the desired approximation; it uses local heating rates, thus 

removing the error arising from using a programmed heating rate; the 
non-isothermal kinetic parameters are directly obtained using solutions of a 
linear system of equations; and the method can be applied, in principle, to 
any form of f(a). 

The disadvantages of the method, which in principle can be avoided, are 
the following: large volumes of calculations which can be managed by using 
programmable computers; if the selected intervals ha, and AT, are too low, 
there is a negative effect on the experimental errors; if ACX, and AT, are too 
high, problems of convergence could appear; and, when more than three 
kinetic parameters are being evaluated, stability problems could appear. 

EXAMPLE OF APPLICATION OF THE METHOD 

To apply the method, we shall model a non-isothermal curve describing a 
solid-gas decomposition of the form 

A,+&+ cg (42) 

using the following data: E = 25.000 kcal mol-‘; A = 6 X 10” min -l; 
f(a) = 1 - a; /3 = 10 K mm’; and R = 1.987 cal mol-’ K-‘. 

When modelling the curve, the local heating rate is considered to be equal 
to the overall heating rate. 

Instead of eqn. (15), the following equivalent equation can be used 

lnA+lnf(a,)-j&- 
x 

Modelling was performed using the relationship 

/ 

*da A T 

0 l-(Y=p 0 J 
exp - &dT 

or 

-ln(l-cu)=ATexp-x 
x3 + 18x2 + 88x + 96 

P x4 + 20x3 + 120x* + 240x + 120 
(45) 
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TABLE 1 

Pairs of values a and T for 0.05 I EY I 0.95 

NO. a T WI 

1 0.05 414.665 
2 0.10 424.115 
3 0.15 430.009 
4 0.20 434.421. 
5 0.25 438.021 
6 0.30 441.113 
7 0.35 443.863 
8 0.40 446.374 
9 0.45 448.717 

10 0.50 450.942 
11 0.55 453.090 
12 0.60 455.198 
13 0.65 457.301 
14 0.70 459.438 
15 0.75 461.657 
X6 0.80 464.029 
17 0.85 466.670 
18 0.90 469.819 
x9 0.95 474.163 

TABLE 2 

Various combinations of cxi and cyk for N = 16 

h aI "k 

1 0.05 0.10 
2 0.10 0.20 
3 0.15 0.30 
4 0.20 0.35 
5 0.25 0.45 
6 0.30 0.50 
7 0.35 0.55 
8 0.40 0.65 
9 0.45 0.70 

10 0.50 0.75 
11 0.55 0.80 
12 0.60 0.85 
13 0.65 0.85 
14 0.70 0.90 
15 0.75 0.90 
16 0.80 0.95 



17 

TABLE 3 

Values of the non-isothermal kinetic parameters corresponding to three iterations 

i Ej (kcal mol-‘) Mj A’ (nun-‘) 

0 25.462 1.093 10.68 x 10” 
1 24.986 0.996 5.90 x 10” 
2 25.022 1.001 6.16 x 10” 

where 

By solving eqn. (44) for various values of a, the values of T given in Table 1 
have been calculated. 

To determine A, E and n (for f(cw) = (1 - a)“), the system of eqns. (23) 
(24) and (27) are solved (m =p = 0). Instead of In (Aa, /Ath) we shall use 

ln (AQAWP ( see relationship (43). 
For N = 16 the considered combinations of (~l~ and (Yk are given in Table 

2. The results obtained for three iterations are given in Table 3. 
The values of the non-isothermal kinetic parameters calculated using 

relationship (37) are: E = 25.004 kcal mol-‘; n = 0.9985; and A = 6.03 x 

101’ mm’. There is excellent agreement with the values used for modelling. 

CONCLUSIONS 

A new method of evaluating non-isothermal kinetic parameters has been 
worked out. The use of local heating rates removes the errors generated by 
the deviation from linearity of the programmed temperature. The values of 
the non-isothermal kinetic parameters obtained by applying the method are 
in excellent agreement with those used in modelling the non-isothermal 
curve. 
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